

Tackling Transport in Africa The TEST Network

Dr Jürgen Perschon / EURIST European Institute for Sustainable Transport Hamburg / Germany

> Learning Centre UN CSD 19 May 4th 2011 - New York

Based on Gary Haq Stockholm Environmental Institute, UK

Introduction

Key Challenges

Objective of the TEST Network

Current Activities & First Results

"Transport, Environment, Science and Technology (TEST) Network".

-The EU supports the development of a research network in six African countries

- Tanzania, Zambia, Uganda, South Africa, Mozambique and Zimbabwe

Introduction

-Fund: ACP Science and Technology Programme of the 9th European Development Fund

Network Leader Stockholm Environment Institute, University of York

International Partners European Institute for Sustainable Transport, Germany (EURIST)

Country Partners

Mozambique – Universidade Eduardo Mondlane

- South Africa University of Cape Town
- Tanzania Ardhi University
- Makarere University Uganda
- Zambia - University of Zambia
- Zimbabwe
- University of Zimbabwe

Urbanisation (1950-2030)

- Africa's urban population growth rates continue to be the highest in the world
- Approximately 3.3 to 3.7 per cent annually
- African based population are growing faster than the counterparts in Asia

(UNDESA, 2004)

www.sei.international.org

Motorization

SEI

- A key source of urban air pollution in Cairo, Cape Town, Dakar, Nairobi and Johannesburg
- In 2000 Africa had 2.5 per cent of the total world vehicle population, approx. 700 million
- Doubling of motor vehicle fleets in the past 10 yrs in Botswana, Uganda, Zimbabwe (UNEP, 2006)

Vehicle Growth (Example Uganda)

www.sei-international.org

Air Quality Management

Country	Key pollutants	Sulphur content ^{††} of diesel [ppm]	Inspection & maintenance for mobile sources	Emissions inventory	Routine monitoring	Health impact assessment	Projects or plans with AQ benefit ongoing	Estimated stage of air quality management
Mozambique	PM ₁₀ , PM _{2.5} , Black Carbon, SO ₂ , NOx, CO ₂ , O ₃ .	500	No	Being developed	No	No	Yes	Early*
South Africa	PM ₁₀ , PM _{2.5} , NOx, SO ₂ , O ₃ , CO,Pb	500	Yes	Yes	Yes	Yes, a few	Yes	Advancing ⁺⁺
Tanzania	PM,CO,NO_2,SO_2,O_3,Pb	5,000	No	No	Yes, in Dar-es- Salaam	No	Yes	Early*
Uganda	PM, CH_4 , H_2S , NH_3 , dioxins and furans, HCs, NO_x , SO_x , re-suspended dust	5,000	No	No	No	No	Yes	Initial ^{†††}
Zambia	SO_2 , NO_2 , PM, black smoke, dust, CO, CO_2 and odours	7,500	No	Yes, initial, n copper belt	Yes, campaigns	No	Yes	Intermediate**
Zimbabwe	SO ₂ , NO ₂ , PM, CO, VOCs	500	Yes, for stationary sources	No	Yes, campaigns	Anecdotal evidence	No	Intermediate**

[†]Source: Schwela 2007, updated. This table is not meant to compare the stages of AQM capability across countries. The parameters on which AQM capability was estimated are not the "ideal set of parameters for doing this but the "best available common parameters" in SSA countries. The scale from "Initial" to "Comprehensive" is a relative scale with respect to the countries covered in this table and not an absolute scale. ^{††}Source: PCFV (2010); ^{†††} Initial = Any one topic addressed; * Early = Any two topics addressed; ** Intermediate = Any three topics addressed; ⁺⁺ Advancing = More than three topics addressed.

Road Safety

SEI

Road traffic crashes are major causes of in SSA region 28 people per 100,000 die compared to 17 in EU low-middle income countries

Deaths/100k persons/2000

Angola	58.0
Sudan	30.8
South Africa	30.3
Rwanda	29.0
Uganda	27.5
Sweden	6.2
Singapore	5.3

www.sei-international.org

Men More at Risk

Uganda: Unintentional deaths 75% Male 25% Female

Young adults (16-40) more affected

Major causes of road crashes:

- Human Error with the traffic system
 Speed a cause of 50% of road crashes
 in Ghana
 (1998-2000)
- The vehicle and equipment
 Vehicle defects as a cause of crashes
 5% Kenya, 3% South Africa
- Infrastructure and environment
 Lack of road barriers, segregation, crossings

www.sei-international.org

Traffic Congestion

SEI

Rapid Urbanisation

Migration from towns and villages to the cities for work Rapidly expanding cities, long travel distances, limited road space

<u>High Motorisation Rates</u> Poor public transport, increase in personal motor vehicles and Motorcycles

Infrastructure, Management, Regulation, Enforcement Lack of road space, traffic lights, speed controls, capacity to manage and enforce

The Evidence Base

Published data on transport congestion, air pollution (including greenhouse gases and noise) and road safety in SSA tend be to be

variable
of poor scientific quality
based on many perspectives

ASSESSING THE IMPACT OF CLIMATE CHANGE ...

Worldwide Research Expenditure

(Source: www.worldmapper.org)

www.sei-international.org

Overall Objective

To strengthen scientific and technological capacity to support the formulation and implementation of sustainable transport policies which contribute to poverty reduction and economic development in SSA

www.sei-international.org

Programme Objectives

Determining the evidence base and enhancing capacity

STRENGHTEN NETWORKING between EU and SSA partners

SHARING KNOWLEDGE via quality-assured knowledge database

ENHANCE RESEARCH CAPACITY via short-term training programmes

COMMUNICATE AND DISSEMINATE knowledge

www.sei-international.org

Activities

Knowledge

- Benchmarking of research and innovation needs
- Assessment of best practice case studies
- Peer review and evaluation procedure
- Web-based database Enhance Research Capacity
- Training programmes
- Seminars
- National stakeholder meetings
- Workshop on scientific publishing
- Science-technology policy dialogue

Communicate & disseminate

- Website
- Biannual newsletter
- Policy briefs
- National seminar series & debates
- Media communication workshop

Activities so far

- Survey of research capacities and activities of various local and national entities with regards to traffic flow management, air pollution and road safety

- Data was gathered by

-Review of literature (internet)
-investigation of published material
-questionnaire- and telephone-based surveys
-local contact knowledge

Activities so far

- National stakeholder meetings with participants from each relevant field were held to

-review data captured
 -help formulate strategic objectives for the TEST activities

-Website established
-Newsletter developed
-Synopsis Report submitted to EU

South Africa with relativly best data quality:

•RELIABILTY•OBJECTIVITY•VALIDITY•FREQUENCY OF ASSESSMENT

Cape Town Peak-hour traffic volumes on the City's primary road network

(Source: City of Cape Town 2009)

-There are only a few institutions or entities involved in transportation research

Results

- Most research output comes from academic institutions and some from governmental institutions

Other research work is conducted but not published especially for data from consultants work on specific governmental transport projects

LACK OF...

- Transportation research standards and guidelines
- Research infrastructure, equipment

-institutional capacity especially in both governmental agencies and local universities

- Management and coordination of research efforts
- Financial resources to support research

Thank you for your attention ! **Transport and Environment Science Technology Network**

"So where are they? We've been here for hours and not one damned zebra!"

www.sei-international.org

Growth of the City

SEI

www.sei-international.org

DPSIR Framework

www.eurist.info

www.sei-international.org

Vehicle Type	1997	2002	2005	2006	2007
Cars and Taxis	42	54.2	65.5	70.7	81.3
Light	33.1	45.5	53.2	53.2	56
Goods/4WD					
Minibuses	13.4	18	27.6	32	39.5
Buses	0.6	0.8	0.9	0.9	1
Trucks	9.9	15.7	18.7	20.5	23.3
(Rigid/Trailers/A					
rtics)					
Sub-totals	99	134.2	165.8	177.1	201.1
Motorcycles	48	71.2	108.2	134	176.5
Agricultural	3.5	3.8	4.6	4.8	5.2
Tractors and					
Others					
Totals	150.5	209.3	278.6	315.9	382.8

Numbers of Registered Vehicles in Uganda, 1997 – 2007, in thousands

(Source: Uganda National Transport Master Plan, 2009)